Большая советская энциклопедия

Пьезоэлектрические материалы

Пьезоэлектри́ческие материалы

Кристаллические вещества с хорошо выраженными пьезоэлектрическими свойствами (см. Пьезоэлектричество), применяемые для изготовления электромеханических преобразователей: пьезоэлектрических резонаторов, пьезоэлектрических датчиков (См. Пьезоэлектрический датчик), излучателей и приёмников звука и др. Основными характеристиками П. м. являются: 1) коэффициент электромеханической связи , где d — пьезомодуль, Е — модуль упругости, ε — Диэлектрическая проницаемость (в анизотропных П. м. все эти и нижеследующие величины — тензорные); 2) величина k2Itgδ, определяющая кпд преобразователя (δ — угол диэлектрических потерь); 3) отношение механической мощности пьезоэлемента на резонансной частоте к квадрату напряжённости электрического поля в нём; определяется величиной (dE)2; 4) и определяют чувствительность приёмника звука соответственно в области резонанса и на низких частотах (сзв — скорость звука в П. м.). В табл. приведены характеристики некоторых наиболее распространённых П. м. К П. м. в зависимости от назначения предъявляются специальные требования: высокая механическая и электрическая прочности, слабая температурная зависимость характеристик, высокая добротность, влагостойкость и т.д.

Основные характеристики наиболее распространенных пьезоэлектрических материалов при температуре 16—20 °С

Примечание. Цифры в скобках у монокристаллов определяют индексы соответствующих тензорных характеристик, например: (36)/2 означает d36. Для пьезокерамики верхние значения постоянных имеют индексы (11) или (31), а нижние (33), величины d31 < 0, d33 > 0. Значения tgδ для кристаллов даны для поля < 0,05 кв/см; для пьезокерамики tgδ даётся в интервале 0,05 кв/см ≤ E < 2 кв/см. Данные для отечественной пьезокерамики даны на основании ГОСТ 18 927—68.

П. м. могут быть разбиты на: монокристаллы, встречающиеся в виде природных минералов или искусственно выращиваемые (Кварц, дигидрофосфаты калия и аммония, Сегнетова соль, ниобат лития, силикоселенит и германоселенит и др.), и поликристаллические сегнетоэлектрические твёрдые растворы, подвергнутые после синтеза поляризации в электрическом поле (пьезокерамика). Из П. м. первой группы применяются лишь некоторые кристаллы, например кварц, обладающий большой температурной стабильностью свойств, механической прочностью, малыми диэлектрическими потерями и влагостойкостью. Недостатки — сравнительно слабый пьезоэффект, малые размеры кристаллов, трудность обработки. Используется главным образом в пьезоэлектрических фильтрах и стабилизаторах частоты (см. Кварцевый генератор); в лабораторной технике применяются кварцевые излучатели и приёмники ультразвука. Дигидрофосфат аммония — искусственно выращиваемый сегнетоэлектрический кристалл, химически стоек, до точки плавления (Тпл = 130 °С) обладает сравнительно сильно выраженным пьезоэффектом и малой плотностью, однако недостаточно механически прочен. Кристаллы сегнетовой соли (выращиваемые до больших размеров) имеют высокие значения характеристик, определяющих чувствительность приёмника звука. Малая влагостойкость, низкая механическая прочность, а также сильная зависимость свойств от температуры (из-за низких значений температуры Кюри и Тпл = 55 °С) и напряжённости электрического поля ограничивают применение сегнетовой соли. Ниобат лития, силикоселенит и германоселенит наряду с сильно выраженным пьезоэффектом и высокой механической прочностью обладают высокой акустической добротностью и используются в области гиперзвуковых частот (см. Гиперзвук). Турмалин, гидрофосфат калия, сульфат лития и др. практически не используются. Наиболее распространённым промышленным П. м. является Пьезоэлектрическая керамика.

Лит.: Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 1, ч. А, М., 1966; Матаушек И., Ультразвуковая техника, пер. с нем., М., 1962; Ультразвуковые преобразователи, пер. с англ., под ред. Е. Кикучи, М., 1972.

Б. С. Аронов, Р. Е. Пасынков.



ScanWordBase.ru — ответы на сканворды
в Одноклассниках, Мой мир, ВКонтакте