Биологическая энциклопедия

растительная клетка

Растение, как и всякий живой организм, состоит из клеток, причем каждая клетка порождается тоже клеткой. Клетка — это простейшая и обязательная единица живого, это его элемент, основа строения, развития и всей жизнедеятельности организма.

Существуют растения, построенные из однойединственной клетки. К ним относятся одноклеточные водоросли и одноклеточные грибы. Обычно это микроскопические организмы, но есть и довольно крупные одноклеточные (длина одноклеточной морской водоросли ацетабулярии достигает 7 см). Большинство растений, с которыми мы сталкиваемся в повседневной жизни,— это многоклеточные организмы, построенные из большого числа клеток. Например, в одном листе древесного растения их около 20 000 000. Если дерево имеет 200 000 листьев (а это вполне реальная цифра), то число клеток во всех них составляет 4000 000 000 000. Дерево в целом содержит еще раз в 15 больше клеток.

Растения, за исключением некоторых низших, состоят из органов, каждый из которых выполняет свою функцию в организме. Например, у цветковых растений органами являются корень, стебель, лист, цветок. Каждый орган обычно построен из нескольких тканей. Ткань — это собрание клеток, сходных по строению и функциям. Клетки каждой ткани имеют свою специальность. Выполняя работу по своей специальности, они вносят вклад в жизнь целого растения, которая состоит в сочетании и взаимодействии разных видов работы различных клеток, органов, тканей.

Основными, самыми общими компонентами, из которых построены клетки, являются ядро, цитоплазма с многочисленными органоидами различного строения и функций, оболочка, вакуоль. Оболочка покрывает клетку снаружи, под ней находится цитоплазма, в ней — ядро и одна или несколько вакуолей. Как строение, так и свойства клеток разных тканей в связи с их разной специализацией резко различаются. Перечисленные основные компоненты и органоиды, о которых речь пойдет дальше, развиты в них в различной степени, имеют неодинаковое строение, а иногда тот или иной компонент может вовсе отсутствовать.

Главнейшими группами тканей, из которых построены вегетативные (непосредственно не связанные с размножением) органы высшего растения, являются следующие: покровные, основные, механические, проводящие, выделительные, меристематические. В каждую группу обычно входит несколько тканей, имеющих сходную специализацию, но построенных каж дая по-своему из определенного вида клеток. Ткани в органах не изолированы друг от друга, а составляют системы тканей, в которых элементы отдельных тканей чередуются. Так, древесина — это система из механической и проводящей, а иногда и основной ткани. ,

Возьмем для примера два органа высшего растения — лист и стебель. И мы увидим, насколько разнообразны по строению и работе клетки, образующие их ткани (рис. 22 и 23). Мы увидим также, как приспособлено строение клеток каждой ткани к выполнению их специальных функций.

Покровные ткани — эпидермис, пробка, корка — защищают органы растения от неблагоприятных воздействий: от высыхания, перегрева, переохлаждения, лучистой энергии, механических повреждений, излишнего намокания, от проникновения чужеродных организмов, например бактерий. Эпидермис покрывает обе поверхности листа, молодые побеги и лепестки. Как правило, это один слой клеток. Те стенки клеток, которыми они соприкасаются между собой, обычно извилистые, причем выступ одной заполняет вогнутость соседней. Это способствует прочному соединению клеток, которые в результате образуют единый плотный пласт. Внешние, граничащие с воздухом стенки клеток более толстые.

Эпидермальные клетки выделяют вещества, откладывающиеся на них снаружи в виде пленки (например, кутин, образующий плотную кутикулу, и воск; кутин к тому же пропитывает и сами внешние стенки эпидермальных клеток). Толстая внешняя оболочка и наружная пленка из кутина и воска обеспечивают изоляционные, защитные свойства этой ткани. Сквозь ее слой затруднено проникновение газов, воды, бактерий. Однако воздух обязательно должен входить внутрь зеленых частей растения, а наружу выходят водяные пары и кислород. Обмен газами, а также водяным паром между атмосферой и внутренними тканями молодых органов, покрытых эпидермисом, осуществляется с помощью устьиц.

Устьица образованы специальными клетками эпидермиса, между двумя из которых (так называемыми замыкающими клетками устьица) имеется отверстие регулируемой величины — устьичная щель. Через нее осуществляется связь между атмосферой и воздухоносными межклеточными пространствами толщи листа или другого органа, покрытого эпидермисом. Замыкающие клетки устьиц под влиянием перемены условий влажности или освещения меняют свою форму, смыкаясь друг с другом или размыкаясь. При этом они открывают или, соответственно, закрывают устьичную щель. На свету, когда растение фотосинтезирует и нуждается в притоке углекислого газа из атмосферы, устьичные щели открыты. Ночью они закрываются; замыкающие клетки закрывают просветы устьиц и в жаркое время дня, что предохраняет растение от большой потери воды, от увядания.

Часто эпидермальные клетки образуют выросты — волоски (рис. 24). Иногда это многоклеточные образования, в других случаях каждый волосок представляет собой отросток одной клетки, лежащей в общем слое эпидермиса. Они играют защитную, опорную (например, у вьющихся или стелющихся растений), выделительную роль. Важны корневые волоски — трубчатые выросты эпидермальных клеток корня. Они увеличивают всасывающую поверхность последнего. Подсчитано, что на 14 млн. боковых корней одного растения ржи развивается до 14 млрд. корневых волосков. Площадь поверхности корней составляет при этом 232 м2, а волосков — 400 м2. Эпидермис многих семян или плодов образует волоски, способствующие расселению семян, а тем самым растений. Часто волоски использует и человек. Пример этого — хлопок, представляющий собой эпидермальные волоски семян хлопчатника; его волоски имеют толстые целлюлозные оболочки и достигают в длину 70 мм.

В стебле многолетних растений под эпидермисом, на смену ему, развивается более грубая защитная ткань — пробка. Клетки ее отмирают, утрачивают протопласт и состоят только из толстых стенок, которые окружают полость, заполненную воздухом или смолистыми веществами. Стенки пропитаны суберином, делающим их водо- и воздухонепроницаемыми, теплоизолирующими, а также прочными, упругими. Они могут к тому же и одревесневать. Примером этой ткани служит береста. Она довольно тонка, а вот пробка пробкового дуба достигает толщины в несколько десятков сантиметров. Пробка в некоторых местах прерывается чечевичками — образованиями из иной ткани, которая проницаема для воды и воздуха. Через чечевички осуществляется обмен внутренних частей ствола с окружающей средой. Чечевички развиваются на местах устьиц.

В стебле под покровными тканями находятся клетки луба. Луб — это система из элементов нескольких тканей: проводящей, опорной, основной. Важнейший элемент луба — ситовидные трубки. Они построены иэ удлиненных клеток, вытянутых вдоль стебля, сочлененных друг с другом концами. Это живые, но безъядерные клетки, элементы цитоплазмы в которых расположены пристенно. Оболочки в местах стыка этих клеток имеют многочисленные отверстия, так что нерегородки подобны ситу. В результате этого смежные клетки сообщаются между собой и тем самым оказываются объединенными в длинные трубки, тянущиеся сквозь жилки и черешки листьев, по стеблю и корню.

По системе ситовидных трубок продукты, образующиеся в зеленых частях растений, перемещаются ко всем его другим частям, питают их. Основным из транспортируемых продуктов является сахароза. Ситовидные трубки — это элемент проводящей ткани. Около клеток ситовидных трубок имеются клетки-спутники. Они содержат ядра, и их протопласт имеет непосредственные связи с цитоплазмой безъядерных ситовидных клеток. В лубе встречаются также участки, состоящие из паренхимных клеток (т. е. клеток, длина, ширина и высота которых близки по величине). В них откладываются различные вещества — крахмал, масла, смолы. Это клетки основной ткани.

Кроме того, луб содержит элементы опорной ткани — лубяные волокна. Это очень длинные клетки с утолщенными стенками; длина клетки может превышать ее ширину в тысячи раз. У льна длина тонких вытянутых лубяных волокон достигает 4 см, а у рами — даже 35 см. Обычно это мертвые клетки, без протопласта. Они выполняют механическую функцию, создавая прочность стебля.

Большинство специализированных клеток не способно к размножению. Однако растение растет всю свою жизнь, и в течение всей жизни в нем образуются новые клетки. Они развиваются из клеток образовательных — меристематических — тканей. Размножение делением является специализацией меристематических клеток, их функцией в организме. Происшедшие из них клетки развиваются, превращаясь в те или иные специализированные клетки — клетки ситовидных трубок, клетки пробки, волокна и т. д. Образовательная ткань находится в разных частях растения (например, в точках роста — на верхушках побегов, корней). В толще стебля обычно есть несколько слоев образовательной ткани. Под слоем пробки находятся клетки феллогена, которые, делясь, пополняют число клеток пробки, корки. Внутрь от луба располагается слой клеток камбия. Те из порождаемых ими клеток, которые образуются снаружи от камбия, развиваются в клетки луба (рис. 25). Оказавшиеся внутри, т. е. ближе к оси ствола, дают начало клеткам древесины.

Древесина состоит из элементов проводящей, опорной и основной тканей. К первым относятся волокна древесины — длинные мертвые клетки с одревесневшими стенками; ко вторым — сосуды, представляющие собой результат слияния многих клеток; к третьим — клетки древесной паренхимы. Клетки, дифференцирующиеся из камбиальных элементов в проводящие (сосуды), растут в длину и ширину. Их боковые стенки утолщаются и одревесневают. В стенках, однако, остаются поры, закрытые лишь тонкой оболочкой. Перегородки на стыках смежных клеток исчезают, протопласт отмирает. В результате образуются длинные сосуды, состоящие из одних стенок. Проводящая система тянется сквозь корень и стебель в лист. По таким сосудам осуществляется восходящий ток воды и растворенных в ней солей от корней ко всем органам растения.

В центре стебля находятся клетки сердцевины — округлые или многогранные паренхимные клетки. Это элементы основной ткани. Иногда они полые, и в них находится воздух; иногда они заполнены запасными питательными веществами, различными кристаллами, таннинами. Стенки их могут быть рдревесневшими. Древесину и луб пронизывают радиальные лучи. Их клетки являются производными камбия и несут запасающую функцию. На уровне луба эти лучи заметно расширяются.

В мякоти листа между верхним и нижним эпидермисом находится основная ткань — клетки с тонкими оболочками и большим количеством зеленых пластид — хлоропластов. В этих клетках происходит фотосинтез. Верхние слои состоят большей частью из продолговатых клеток, плотно прилегающих друг к другу,— это столбчатая паренхима. Нижние слои рыхлые, между клетками расположены межклетники — пространства, заполненные воздухом; это губчатая паренхима. Паренхима пронизана ветвящимися жилками, которые построены из пучков механической (разнообразные волокна) и проводящей (ситовидные трубки и водоносные сосуды) тканей.

Это краткое и схематичное изложение плана строения стебля, листа показывает, насколько разнообразны по величине, форме, строению, функции клетки одного и того же растения. Если взять разные растения, то можно встретиться с еще большим многообразием клеток. Однако, как правило, клетки одноименных тканей даже весьма далеких друг от друга растений сходны, поскольку эти клетки выполняют аналогичные функции. Клетки эпидермиса листа березы и, например, одуванчика более похожи друг на друга, чем эпидермальная клетка одуванчика и его же ситовидная клетка. Отличительные черты клетки связаны в первую очередь с ее специальной функцией. Клетки, специализированные в механической функции, имеют утолщенные и нередко одревесневшие оболочки. Специализация в фотосинтезе ведет к появлению в клетках хлоропластов. Специализация в проводящей функции связана с удлинением клеток, с утратой протопласта, с изменениями в оболочках клеток на стыках, благодаря которым полости смежных клеток сообщаются. Для клеток, специализированных в защитной функции, характерны многообразные изменения внешних стенок, наличие волосков, способность вырабатывать защитные вещества.

Специализация в функции запасания питательных веществ может привести к увеличению размеров клеток, к появлению в них очень крупных вакуолей. В клетках меристематических, усиленно делящихся, особенно развиты те внутриклеточные структуры, которые обеспечивают синтез веществ — составных частей клетки.

В зависимости от характера специализации одни черты строения и работы клетки развиты очень сильно, другие, напротив, мало развиты или вовсе отсутствуют. Как мы видели, некоторые клетки, став специализированными, умирают и именно в мертвом состоянии начинают выполнять свою специальную функцию в много клеточном организме (клетки пробки, древесинные волокна, сосуды). ,

Очень разнообразны и своеобразны клетки многоклеточных нитчатых водорослей и одноклеточных растений (рис. 26 и 27). Клетка любого из последних к тому же сильно отличается от клеток многоклеточных растений. Ей одной приходится выполнять несколько функций, которые у многоклеточных растений поделены между клетками разных тканей. • В то же время даже очень отличающиеся между собой клетки обладают глубоким сходством в строении и функциях. Для многоклеточных это связано, во-первых, с тем, что все клетки организма (если исключить вегетативное размножение, при котором от материнского растения сразу отделяется в качестве новой особи или ее зачатка целый многоклеточный комплекс) являются потомками одной и той же клетки-родоначальницы. Поэтому, каким бы образом ни были специализированы клетки, они имеют общий исток, а потому являются родственницами.

Во-вторых, общие черты в строении клеток растений разных видов связаны с тем, что все растения состоят в той или иной степени родства. Все растения развились путем эволюции от одноклеточных общих предков. Общие черты унаследованы клетками современных растений от древних прародительских клеток. С этим связано также наличие общих черт строения и работы растительных и животных клеток.

В-третьих, сходство связано с тем, что все живые клетки, какую бы специальную функцию они ни несли в организме, прежде всего должны обеспечивать собственную жизнь. Клетки поглощают питательные вещества, перерабатывают их, добывая энергию и строя собственное тело, дышат, освобождаются от ненужных веществ, борются с различными повреждениями, реагируют на изменения внешних условий, перестраивая свою жизнедеятельность, растут. Все эти процессы у разных клеток осуществляются сходно и с помощью однотипных структур, общих по плану строения не только для разных растительных клеток, но и для клеток растений и животных. Надо сказать, что выполнение любой специальной функции клетки основывается на ее общих свойствах. Та или иная черта, способность, присущая всем клеткам, у специализированной клетки развивается особенно сильно и обеспечивает выполнение клеткой ее основной, специальной функции. Те общие черты, без которых невозможно выполнение этой специальной функции, в клетке сохраняются, а остальные могут утратиться. Мертвые специализированные клетки — крайний, предельный случай этого. Специальная функция таких клеток связана с их оболочкой; протопласт нужен лишь до тех пор, пока он создает оболочку; после этого он отмирает, и вся клетка состоит только из неживой оболочки, которая и работает на нужды растения. , , ,

Рассматривая общие черты строения и жизнедеятельности растительных клеток, удобно говорить о некоей типовой клетке, вобравшей в себя общие черты разных специализированных клеток. Такую клетку, хотя она и не существует в «чистом виде», можно даже изобразить (табл. 7, рис. 28). Из реальных клеток более других похожи на такую «типовую» клетки паренхимы листа (табл. 8, рис. 29).

Перейдем к описанию строения и работы растительной клетки.

Снаружи растительная клетка покрыта оболочкой, неодинаковой по толщине и строению у разных клеток. Образующие ее вещества вырабатываются в цитоплазме и откладываются снаружи от нее, постепенно создавая оболочку. Этими веществами прежде всего являются крупномолекулярные полисахариды —пектин, гемицеллюлоза и в небольших количествах целлюлоза. Они образуют так назынаемую первичную оболочку. Она довольно эластична, по мере роста клетки растягивается и тоже растет, а потому не препятствует росту клетки. Однако она создает определенную прочность клетки и способна защитить ее от механических повреждений. Есть клетки, которые лишены такой первичной оболочки,— это некоторые клетки, служащие для бесполого и полового размножения (зооспоры и гаметы водорослей и низших грибов, мужские гаметы высших растений). У многих клеток имеется не только первичная, но еще и вторичная оболочка. Она образуется под первичной и построена главным образом из целлюлозы. Целлюлоза — это полисахарид, молекулы которого образуют тончайшие нити — микрофибриллы. В оболочке нити целлюлозы погружены в аморфное вещество, состоящее из пектиновых соединений. У одних клеток эти микрофибриллы целлюлозы расположены поперек длины клетки, кольцами; благодаря этому такие клетки могут растягиваться в длину, но не в ширину (например, клетки сосудов стебля). У других нити лежат продольно; клетки с такой оболочкой эластичны при растягивании поперек, но очень жестки на продольное растяжение. У третьих они расположены наискось, образуя спираль (эпидермальные волоски семян хлопчатника, лубяные волокна). Все это напоминает железобетонные конструкции, причем нити целлюлозы играют здесь роль железных прутьев, а пектиновые вещества — роль цемента. Клетки, имеющие вторичную оболочку, весьма прочны. Они образуют механические, опорные ткани растения. Иногда вторичная оболочка играет и роль склада питательных продуктов: образующие ее вещества могут превращаться в другие, более простые, которые расходуются как питание.

В оболочке имеются неутолщенпые места — поры (в первичной оболочке они называются поровыми полями), через которые осуществляется связь между соседними клетками. Сквозь норовые поля и поры проходят тонкие тяжи цитоплазмы. Это плазмодесмы, которые связывают цитоплазму соседних клеток (табл. 9). По ним осуществляется обмен веществами между соседними клетками. Плазмодесмы наряду с элементами проводящей ткани соединяют клетки и ткани организма в единое целое.

Обмен веществами и распространение возбуждения позволяют клеткам влиять на развитие и работу друг друга, и каждая ткань влияет на жизнедеятельность всех других тканей. Этим создается координация работы всех частей единого организма—целого растения.

Во многих клетках клеточная оболочка с возрастом пропитывается веществами, еще более укрепляющими ее. Накопление в ней лигнина ведет к одревеснению оболочки. Одревесневают стенки клеток древесины и, часто, лубяных волокон, оболочки клеток кожуры семян, иногда околоплодника (рис. 30) и даже лепестков. Клетки с одревесневшими стенками не только прочнее, но и менее проницаемы для микробов, для воды. Оболочки некоторых других клеток — покровных тканей, а также на поверхностях поранений — опробковеватот, пропитываясь суберином. Содержимое клеток после этого отмирает, так как суберин непроницаем для воды и газов, но ткань из таких мертвых клеток защищает внутренние живые части растения от вредных внешних воздействий. Как уже говорилось, наружные оболочки клеток эпидермиса обычно пропитываются или покрываются кутином и воском, и это сохраняет клетки от излишнего испарения воды, от проникновения инфекции. Оболочка может пропитываться и минеральными веществами, преимущественно солями кальция.

Бывают, однако, в жизни клеток и такие моменты, когда их оболочка должна стать менее прочной, чем была до этого. Это происходит, например, при прорастании семян.

Полисахаридная клеточная оболочка — характерная черта строения растительной клетки, отличающая ее от животной клетки.

Оболочка, или клеточная стенка, — это защитное образование. Под оболочкой находится цитоплазма. Самый наружный ее слой, примыкающий к оболочке,— поверхностная клеточпая мембрана — плазмалемма. Она представляет собой комбинацию слоев жироподобных н белковых молекул. Такие мембраны называются липопротеиновыми («липос» — жир, «протеин» — белок). Мембрана подобной конструкции отграничивает цитоплазму от вакуолей, эта мембрана называется тонопластом. Многие органоиды клетки построены из липопротеиновых мембран. Однако в каждом случав мембрана построена из жироподобных веществ (липидов) и белков, присущих именно данной мембране. Качественное разнообразие липидов и особенно белков колоссально, отсюда огромное разнообразие мембран, отличающихся по свойствам, и в пределах одной клетки, и в разных клетках.

Плазмалемма регулирует вход веществ в клетку и выход их из нее, обеспечивает избирательное проникновение веществ в клетку и из клетки. Скорость проникновения сквозь мембрану разных веществ различна. Хорошо проникают через нее вода и газообразные вещества. Легко проникают также жирорастворимые вещества,— вероятно, благодаря тому, что она имеет липидный слой. Предполагается, что липидный слой мембраны пронизан порами. Это позволяет проникать сквозь мембрану веществам, нерастворимым в жирах. Поры несут электрический заряд, поэтому проникновение через них ионов не вполне свободно. При некоторых условиях заряд пор меняется, и этим регулируется проницаемость мембран для ионов. Однако мембрана неодинаково проницаема и для разных ионов с одинаковым зарядом, и для разпых незаряжепных молекул близких размеров. В этом проявляется важнейшее свойство мембраны — избирательность ее проницаемости: для одних молекул и ионов она дропицаема лучше, для других хуже.

Вещество движется в клетку, диффундируя в нее, если его концентрация снаружи больше, чем концентрация внутри. В противном случае оно должно диффундировать из клетки. Но, проникнув в клетку, молекулы данного вещества могут тут же вовлечься в обмен веществ и подвергнуться превращению в другие вещества. Тогда концентрация этого вещества внутри клетки снова падает, и новая порция его молекул диффундирует внутрь клетки. В результате в клетки, активно расходующие то или иное вещество, последнее усиленно поступает из окружающих клеток.

Другой механизм усиленного поглощения вещества клеткой состоит в его связывании белками или другими веществами. Связываясь, вещество уходит из внутриклеточного раствора и не препятствует дальнейшей диффузии этого же вещества. Оно продолжает поступать в клетку и скапливается в ней в связанной форме. Так, в клетках некоторых морских водорослей йод накапливается в концентрациях, в миллион раз превышающих его концентрацию в морской воде.

Во всех этих случаях речь идет о движении веществ путем диффузии. Однако клеточные мембраны располагают и механизмами перемещения веществ через себя от меньшей их концентрации к большей. Среди белков мембраны имеются белковые вещества, работа которых состоит в перемещении различных веществ с одной стороны мембраны на другую. Они называются транспортными ферментами. Вероятно, такой транспортный фермент образует с переносимым веществом промежуточное соединение; последнее проходит сквозь мембрану, расщепляется затем на исходные части, после чего фермент возвращается назад, а перенесенное вещество остается по другую сторону мембраны. Детали этого процесса неизвестны, но сам факт такого активного транспорта веществ несомненен. В отличие от диффузного, пассивного, ферментативный транспорт нуждается в затрате энергии. Вероятно, именно благодаря такому активному транспорту ионов клетки эпидермиса корней способны всасывать из почвы нужные растению неорганические вещества и затем передавать их по растению от клетки к клетке.

При химических или физических изменениях во внешней и внутренней среде клеточные мембраны изменяют свою проницаемость, а также степень и сам характер ее избирательности. На этом основываются механизмы регуляции движения веществ в клетку и из клетки. Изменение проницаемости мембран для питательных веществ отражается на интенсивности обменных процессов в клетке, на характере протекающих в ней синтезов, на всей ее жизнедея тельности. В изменении проницаемости мембран для ионов натрия и калия состоит механизм распространения клеточного возбуждения — возникновения и перемещения биотока. К поверхности мембраны присоединено большое количество катионов, главным образом ионов калия. Поэтому она несет снаружи положительный заряд. Под влиянием раздраячителей ионы калия отщепляются от участка, подвергшегося воздействию, заряд участка падает и он становится электроотрицательным по отношению к соседним участкам мембраны. Эта электроотрицательность является, в свою очередь, раздражителем для соседних участков, тем же путем снимая их заряд, деполяризуя их. Волна электроотрицательности распространяется по мембране — это и есть биоток. Затем ионы калия снова садятся на мембрану, придавая ей исходный заряд,— за волной деполяризации следует волна восстановления. Поверхности плазмодесм, проходящих сквозь клеточные стенки и соединяющих цитоплазму соседних клеток, тоже образованы такими мембранами. Биоток движется и по ним, распространяясь от клетки к клетке. Биотоки растительной клетки пока еще мало изучены. Однако ясно, что они являются способом сигнализации, используемым в растительной клетке для пуска в ход одних химических реакций и торможения других. Дело в том, что все химические процессы, протекающие в клетке и составляющие сущность ее жизнедеятельности, идут с участием биологических катализаторов — ферментов. Каждая реакция возможна лишь тогда, когда фермент, пускающий ее в ход, активен. Большинство ферментов становятся активными под действием тех или иных неорганических катионов: К», Na', Са», Mg», Мn». Биоток, меняя проницаемость мембран для заряженных веществ, создает условия для их проникновения сквозь мембраны и контакта с ферментами. Тем самым биоток включает в действие те или иные ферменты и этим регулирует, направляет обмен веществ в клетке. Регуляция обмена веществ биотоками — это лишь один из многих способов регуляции внутриклеточного метаболизма.

Сказанное о проницаемости поверхностной мембраны клетки — плазмалемме — относится и к другим внутриклеточным мембранам, в том числе к тем, из которых построены многие органоиды клетки.

Цитоплазма, когда-то считавшаяся однородным коллоидным раствором белковых веществ, на самом деле сложно структурирована. По мере развития микроскопической техники исследования выяснялись все более тонкие детали строения цитоплазмы. В цитоплазме были открыты различные органоиды (органеллы) — структуры, каждая из которых выполняет определенные физиологические и биохимические функции. Важнейшими органоидами цитоплазмы являются митохондрии, эндоплазматический ретикулум (эндоплазматическая сеть), аппарат Гольджи, рибосомы, пластиды, лизосомы. У подвижных клеток (зооспоры и гаметы водорослей, сперматозоиды хвощей, папоротников, саговников, некоторые одноклеточные и колониальные водоросли) имеются органоиды движения — жгутики.

Особенно много новых фактов о тонком строении цитоплазмы принесло и приносит использование электронного микроскопа, позволяющего исследовать детали строения самих органоидов. Современные биофизические и биохимические методы позволяют выделять в чистом виде те или иные органоиды цитоплазмы и затем изучать их химический состав и их функции. Вне клетки, в средах сложного состава, многие органоиды способны выполнять ту работу, которую они производят, когда находятся в клетке.

Часть цитоплазмы, в которую погружены органоиды и которая пока что представляется бесструктурной, называется основным веществом цитоплазмы или гиалоплазмой. Гиалоплазма — это отнюдь не пассивный наполнитель, а активно работающая часть цитоплазмы. В ней протекает ряд жизненно необходимых химических процессов, в ее состав входят многие белки-ферменты, при помощи которых эти процессы осуществляются.

Жизнь клетки состоит в непрерывной химической работе, которая в своей совокупности называется обменом веществ. Но существу, клетка представляет собой химический завод, вырабатывающий большой ассортимент продукции и самостоятельно добывающий энергию, необходимую для ее производства. Ее продукцией являются вещества, которые необходимы и ей самой для поддержания ее собственной жизни (для построения своего тела при росте и развитии, для замены своих сносившихся частей), и для создания дочерних клеток при размножении, и для нужд других клеток организма.

Все химические реакции, протекающие в клетке, можно разделить на две группы. В результате одних те или иные вещества распадаются на более мелкомолекулярные. В результате других из мелкомолекулярных веществ синтезируются вещества с более крупными молекулами. Молекула любого вещества состоит из атомов, которые удерживаются между собой химическими связями, т. е. тем или иным количеством сконцентрированной потенциальной химической энергии. Когда молекула дробится, связи рвутся и их химическая энергия освобождается. Для синтеза, т. е. для образования более крупной молекулы из мелких, нужно создать новые химические связи, В них необходимо вложить некоторую порцию энергии. Напротив, реакции распада в конечном итоге идут с освобождением энергии, так как при них связи между атомами рвутся. Биологический смысл реакций распада, идущих в клетке, состоит в том, что при них освобождается химическая энергия, используемая затем клеткой для реакций синтеза и для производства иных видов работы (электрической, механической, работы по транспорту веществ). Так как клетка всю свою жизнь синтезирует различные вещества, то ей приходится непрерывно расщеплять другие вещества. Освобождающаяся энергия используется для синтезов не сразу. Сначала она запасается путем образования специальных веществ — аккумуляторов химической энергии — аденозинтрифосфорной кислоты (АТФ) и родственных ей соединений. В нужный момент и в соответствующей точке клетки АТФ расщепляется и отдает энергию для синтеза необходимого клетке вещества.

Все химические реакции, протекающие в клетке,— и синтеза и распада — осуществляются с помощью ферментов. Ферменты — белковые вещества, ускоряющие течение реакций. Ускорение это настолько велико, что без ферментов подобные реакции вообще были бы невозможны в клетке. Известны случаи, когда благодаря ферменту реакция ускоряется в 10/11 раз. Это значит, что реакция, заканчивающаяся с участием фермента в течение 0,01 сек, без него протекала бы 31 год. Понятно, что такие реакции без фермента были бы просто нереальными.

Кроме того, благодаря ферментам течение химических реакций в клетке управляемо, регулируемо. Активность ферментов в клетке меняется в соответствии с ее потребностью в определенном веществе или в энергии, т. е. в конечном результате работы этих самых ферментов. Когда появляется потребность в каком-то веществе, включаются в действие или заново синтезируются те ферменты, благодаря которым оно образуется. Образование веществ, освобождение и запасание энергии — это итог последовательных реакций, результат работы целой цепи ферментов. Все структуры живых частей клетки построены именно из ферментов и из веществ, скрепляющих эти ферменты. При этом ферменты, участвующие в смежных, последовательно протекающих реакциях, и расположены рядом. Они передают молекулы превращаемых ими веществ друг другу, как по конвейеру, причем каждый из них совершает над молекулой свою рабочую операцию.

В гиалоплазме содержатся ферменты, расщепляющие молекулы глюкозы на более простые молекулы пировиноградной кислоты. Освобождающаяся при этом энергия запасается путем образования молекул АТФ. Тот же процесс протекает и в клеточном ядре. Однако основная масса энергии добывается в особых органоидах цитоплазмы — митохондриях, так как там происходит более глубокое расщепление веществ. ,

Митохондрии — мелкие тельца округлой или продолговатой формы, размером 0,5 — 1,5 мк, т. е. величиной с бактерию. Число их в клетке обычно велико, порядка 100—3000. Бывают, однако, клетки и с малым количеством митохондрий. Так, в спермин морской водоросли фукуса содержится всего 4 митохондрии, а в одноклеточной водоросли микромонас — одна. Митохондрии видны под световым микроскопом, однако их тонкое строение можно изучать лишь с помощью электронного микроскопа (табл. 10, схема строения — рис. 31). Митохондрии — это образования, построенные из липопротеиновых мембран, погруженных в основное вещество — матрикс. Оболочка митохондрии образована двумя мембранами, между которыми имеется промежуток.

Внутренняя иэ мембран оболочки дает многочисленные впячивания внутрь, это кристы. Между ними находится матрикс. И внутренняя мембрана оболочки митохондрии, и образуемые ею кристы построены иэ упорядочение расположенных ферментов. Благодаря складкам — кристам рабочая поверхность мембран внутри митохондрий очень велика. Ряд ферментов находится в матриксе митохондрии, т. е. между кристами.

Совокупность этих ферментов осуществляет внутриклеточное дыхание и запасание освобождающейся при дыхании энергии в форме АТФ. Работа митохондрий тесно связана с процессами, идущими в гиалоплазме, где протекают первые этапы расщепления глюкозы и других веществ до пировиноградной кислоты. В митохондриях же протекает дальнейшее ее расщепление. Пировиноградная кислота проникает в митохондрии и здесь ступенчато, шаг за тагом, окисляется до углекислого газа и воды, причем одновременно потребляется кислород. Это и есть внутриклеточное дыхание, при котором клетка, расщепляя и окисляя вещества, добывает очень много энергии, которую она потом может использовать для самых разных своих нужд.

Первый этап расщепления молекулы глюкозы, во время которого она дробится пополам и который протекает в гиалоплазме, дает клетке всего лишь две молекулы АТФ.

В результате второго этапа, приводящего к полному «сгоранию» глюкозы, образуется еще 36 молекул АТФ. Поэтому митохондрии по своей функции — это силовые станции клетки, машины для добывания основного количества энергии. Само расщепление продуктов распада глюкозы происходит в матриксе митохондрии, АТФ же образуется благодаря реакциям, разыгрывающимся на внутренних ее мембранах, в состав которых входят дыхательные ферменты и ферменты, обеспечивающие образование АТФ. Количество крист в митохондриях может быть различным. Чем их больше, тем выше биохимическая активность митохондрий.

Мы говорим здесь о глюкозе как о веществе, расщепляя которое клетка добывает энергию. Глюкоза является центральным, но пе единственным из таких веществ. Молекула ее имеет остов из шести атомов углерода, соединенных между собой. В результате длинной и сложной цепи реакций ее молекула дробится, окисляется и, в конце концов, расщепляется на шесть молекул неорганического вещества — углекислого газа (С02), каждая молекула которого содержит лишь один атом углерода, причем он предельно окислен. Сложив все последовательные реакции окисления глюкозы и исключив при этом все промежуточные продукты, можно получить суммарную реакцию этого процесса:

Крахмал легко превращается в глюкозу, после чего она подвергается вышеописанному расщеплению. Белки и жиры дают различные органические кислоты, которые превращаются в промежуточные продукты распада глюкозы и далее окисляются таким же образом, как последняя, и с помощью тех же ферментов.

Полное биологическое окисление органического вещества подобно его сгоранию. В обоих случаях результатом являются углекислый газ, вода и выделяющаяся энергия. Однако при горении эта энергия выделяется в виде тепла,



ScanWordBase.ru — ответы на сканворды
в Одноклассниках, Мой мир, ВКонтакте