Математическая энциклопедия

Суммирование Рядов Фурье

Построение средних рядов Фурье с помощью суммирования методов. Наиболее развита теория С. р. Ф. по тригонометрич. системе. В этом случае для функций с рядами Фурье изучаются свойства средних, соответствующих рассматриваемому методу суммирования. Напр., для Абеля — Пуассона метода суммирования средними являются гармонические в единичном круге функции а для средних арифметических метода суммирования — суммы Фейера Кроме названных, наиболее важными в теории одномерных тригонометрич. рядов являются Чезаро методы суммирования, Рисса метод суммирования, Римана метод суммирования, Бернштейна — Рогозинского, метод суммирования, Балле Пуссена метод суммирования. Рассматриваются также методы суммирования, порождаемые более или менее произвольной последовательностью -множителей С. р. Ф. применяется в следующих задачах. Представление функций с помощью рядов Фурье. Напр., средние Абеля — Пуассона f(r, x )при и суммы Фейера при сходятся к функции f(х)в точках ее непрерывности, причем сходятся равномерно, если f непрерывна во веех точках; для каждой функции эти средние сходятся к ней в метрике L. Частные суммы рядов Фурье указанными свойствами не обладают. Построение полиномов с хорошими аппроксимативными свойствами. Фактически с помощью С. р. Ф. было установлено Джексона неравенство. Для решения этой задачи, наряду с использованием известных методов суммирования, были предложены новые методы — Джексона сингулярный интеграл, Балле Пуссена суммы. В терминах средних рядов Фурье можно характеризовать многие свойства функций. Напр., функция f является существенно ограниченной в том и только том случае, когда существует такая постоянная М, что для всех n и х. Существенную роль играет С. р. Ф. в теории кратных тригонометрич. рядов. Так, вместо сферических частных сумм чаще используют их средние Рисса достаточно высокого порядка. Рассматривается также С. р. Ф. по другим ортонормированным системам функций — как по конкретным системам или классам систем, напр., по ортогональным многочленам, так и по произвольным ортонормированным системам. Лит.:[1] Бари Н. К., Тригонометрические ряды, М., 1961; [2] Зигмунд А., Тригонометрические ряды, т. 1-2, пер. с англ., М., 1965; [3] Харди Г., Расходящиеся ряды, пер. с англ., М., 1951; [4] Качмаж С., Штейнгауз Г., Теория ортогональных рядов, пер. с. нем., М., 1958; [5] Тиман А. Ф., Теория приближения функций действительного переменного, М., 1960. С. А. Теляковский.



ScanWordBase.ru — ответы на сканворды
в Одноклассниках, Мой мир, ВКонтакте